Kinetics of halide release of haloalkane dehalogenase: evidence for a slow conformational change.

نویسندگان

  • J P Schanstra
  • D B Janssen
چکیده

Haloalkane dehalogenase converts haloalkanes to their corresponding alcohols and halides. The reaction mechanism involves the formation of a covalent alkyl-enzyme complex which is hydrolyzed by water. The active site is a hydrophobic cavity buried between the main domain and the cap domain of the enzyme. The enzyme has a broad substrate specificity, but the kcat values of the enzyme for the best substrates 1,2-dichloroethane and 1,2-dibromoethane are rather low (3 and 3.5 s-1, respectively). Stopped-flow fluorescence experiments with substrate under single-turnover conditions indicated that halide release could limit the overall kcat. Furthermore, at 5mM 1,2-dibromoethane the observed rate of substrate binding to free enzyme was faster than 700 s-1 (within the dead time of the stopped-flow instrument) whereas displacement of halide by 5mM 1,2-dibromoethane occurred at a rate of only 8 s-1. The binding of bromide and chloride to free enzyme was also studied using stopped-flow fluorescence, and the dependence of kobs on the halide concentration suggested that there were two parallel routes for halide binding. One route, in which a slow enzyme isomerization is followed by rapid halide binding, was predominant at low halide concentrations. The other route involves rapid binding into an initial collision complex followed by a slow enzyme isomerization step and prevailed at higher halide concentrations. The overall rate of halide release was low and limited by a slow enzyme isomerization preceding actual release (9 and 14.5 s-1 for bromide and chloride, respectively). We propose that this slow isomerization is a conformational change in the cap domain that is necessary to allow water to enter and solvate the halide ion. A solvent kinetic isotope effect of 2H2O was found both on kcat and on the rate of halide release. 2H2O mainly affected the rate of the conformational change, which is in agreement with this step being rate-limiting and the overall stabilizing effect of 2H2O on the conformation of proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic analysis of halide binding to haloalkane dehalogenase suggests the occurrence of large conformational changes.

Haloalkane dehalogenase (DhlA) hydrolyzes short-chain haloalkanes to produce the corresponding alcohols and halide ions. Release of the halide ion from the active-site cavity can proceed via a two-step and a three-step route, which both contain slow enzyme isomerization steps. Thermodynamic analysis of bromide binding and release showed that the slow unimolecular isomerization steps in the thre...

متن کامل

Kinetic characterization and X-ray structure of a mutant of haloalkane dehalogenase with higher catalytic activity and modified substrate range.

Conversion of halogenated aliphatics by haloalkane dehalogenase proceeds via the formation of a covalent alkyl-enzyme intermediate which is subsequently hydrolyzed by water. In the wild type enzyme, the slowest step for both 1,2-dichloroethane and 1,2-dibromoethane conversion is a unimolecular enzyme isomerization preceding rapid halide dissociation. Phenylalanine 172 is located in a helix-loop...

متن کامل

Influence of mutations of Val226 on the catalytic rate of haloalkane dehalogenase.

Haloalkane dehalogenase converts haloalkanes to their corresponding alcohols. The 3D structure, reaction mechanism and kinetic mechanism have been studied. The steady state k(cat) with 1,2-dichloroethane and 1,2-dibromoethane is limited mainly by the rate of release of the halide ion from the buried active-site cavity. During catalysis, the halogen that is cleaved off (Cl alpha) from 1,2-dichlo...

متن کامل

Biochemical characteristics of the novel haloalkane dehalogenase DatA, isolated from the plant pathogen Agrobacterium tumefaciens C58.

We report the biochemical characterization of a novel haloalkane dehalogenase, DatA, isolated from the plant pathogen Agrobacterium tumefaciens C58. DatA possesses a peculiar pair of halide-stabilizing residues, Asn-Tyr, which have not been reported to play this role in other known haloalkane dehalogenases. DatA has a number of other unique characteristics, including substrate-dependent and coo...

متن کامل

Specificity and kinetics of haloalkane dehalogenase.

Haloalkane dehalogenase converts halogenated alkanes to their corresponding alcohols. The active site is buried inside the protein and lined with hydrophobic residues. The reaction proceeds via a covalent substrate-enzyme complex. This paper describes a steady-state and pre-steady-state kinetic analysis of the conversion of a number of substrates of the dehalogenase. The kinetic mechanism for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 35 18  شماره 

صفحات  -

تاریخ انتشار 1996